Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48.202
Filter
1.
J Cell Mol Med ; 28(8): e18269, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38568056

ABSTRACT

Circular RNAs (circRNAs) play an important role in the progression of osteosarcoma. However, the precise function of circPVT1 in osteosarcoma remains elusive. This study aims to explore the molecular mechanism underlying the involvement of circPVT1 in osteosarcoma cells. We quantified circPVT1 expression using qRT-PCR in both control and osteosarcoma cell lines. To investigate the roles of circPVT1, miR-490-5p and HAVCR2 in vitro, we separately conducted overexpression and inhibition experiments for circPVT1, miR-490-5p and HAVCR2 in HOS and U2OS cells. Cell migration was assessed through wound healing and transwell migration assays, and invasion was measured via the Matrigel invasion assay. To elucidate the regulatory mechanism of circPVT1 in osteosarcoma, a comprehensive approach was employed, including fluorescence in situ hybridization, qRT-PCR, Western blot, bioinformatics, dual-luciferase reporter assay and rescue assay. CircPVT1 expression in osteosarcoma cell lines surpassed that in control cells. The depletion of circPVT1 resulted in a notable reduction in the in vitro migration and invasion of osteosarcoma cells. Mechanism experiments revealed that circPVT1 functioned as a miR-490-5p sequester, and directly targeted HAVCR2. Overexpression of miR-490-5p led to a significant attenuation of migration and invasion of osteosarcoma cells, whereas HAVCR2 overexpression had the opposite effect, promoting these abilities. Additionally, circPVT1 upregulated HAVCR2 expression via sequestering miR-490-5p, thereby orchestrating the migration and invasion in osteosarcoma cells. CircPVT1 orchestrates osteosarcoma migration and invasion by regulating the miR-490-5p/HAVCR2 axis, underscoring its potential as a promising therapeutic target for osteosarcoma.


Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , Humans , In Situ Hybridization, Fluorescence , Cell Movement/genetics , Osteosarcoma/genetics , Bone Neoplasms/genetics , MicroRNAs/genetics , Hepatitis A Virus Cellular Receptor 2
2.
Rinsho Ketsueki ; 65(3): 147-152, 2024.
Article in Japanese | MEDLINE | ID: mdl-38569857

ABSTRACT

A 41-year-old woman with right shoulder pain was found to have multiple tumors with osteolysis and M-proteinemia. Abnormal plasma cells (CD38+, CD138+, Igλ≫κ) were detected in 1.4% of bone marrow nucleated cells, and G-banding analysis revealed a 46,XX,t (8;14), (q24;q32) karyotype in 4 of 20 cells analyzed. A biopsy specimen from an extramedullary lesion had a packed proliferation of aberrant plasmacytoid cells with positive IgH::MYC fusion signals on fluorescence in situ hybridization. The patient was diagnosed with symptomatic multiple myeloma and treated with the BLd regimen, which significantly reduced M protein levels. Extramedullary lesions were initially reduced, but increased again after four cycles. The lesions disappeared with subsequent EPOCH chemotherapy and radiation, and complete remission was confirmed. The patient was then treated with high-dose chemotherapy with autologous peripheral blood stem cell transplantation. Complete remission was maintained for over one year with lenalidomide maintenance therapy. A solitary IgH::MYC chromosomal translocation is extremely rare in multiple myeloma and may be associated with high tumor proliferative capacity, multiple extramedullary lesions, and poor prognosis. Combined therapeutic modalities with novel and conventional chemotherapy and radiation might be a promising treatment strategy for patients with this type of multiple myeloma.


Subject(s)
Multiple Myeloma , Female , Humans , Adult , Multiple Myeloma/therapy , Multiple Myeloma/drug therapy , In Situ Hybridization, Fluorescence , Translocation, Genetic , Lenalidomide/therapeutic use , Karyotyping
3.
FASEB J ; 38(7): e23598, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38581244

ABSTRACT

The precise molecular mechanism behind fetal growth restriction (FGR) is still unclear, although there is a strong connection between placental dysfunction, inadequate trophoblast invasion, and its etiology and pathogenesis. As a new type of non-coding RNA, circRNA has been shown to play a crucial role in the development of FGR. This investigation identified the downregulation of hsa_circ_0034533 (circTHBS1) in FGR placentas through high-sequencing analysis and confirmed this finding in 25 clinical placenta samples using qRT-PCR. Subsequent in vitro functional assays demonstrated that silencing circTHBS1 inhibited trophoblast proliferation, migration, invasion, and epithelial mesenchymal transition (EMT) progression and promoted apoptosis. Furthermore, when circTHBS1 was overexpressed, cell function experiments showed the opposite result. Analysis using fluorescence in situ hybridization revealed that circTHBS1 was primarily found in the cytoplasmic region. Through bioinformatics analysis, we anticipated the involvement of miR-136-3p and IGF2R in downstream processes, which was subsequently validated through qRT-PCR and dual-luciferase assays. Moreover, the inhibition of miR-136-3p or the overexpression of IGF2R partially reinstated proliferation, migration, and invasion abilities following the silencing of circTHBS1. In summary, the circTHBS1/miR-136-3p/IGF2R axis plays a crucial role in the progression and development of FGR, offering potential avenues for the exploration of biological indicators and treatment targets.


Subject(s)
MicroRNAs , Female , Humans , Pregnancy , Apoptosis/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Fetal Growth Retardation/metabolism , In Situ Hybridization, Fluorescence , MicroRNAs/genetics , MicroRNAs/metabolism , Placenta/metabolism , Trophoblasts/metabolism
4.
Int J Nanomedicine ; 19: 3143-3166, 2024.
Article in English | MEDLINE | ID: mdl-38585472

ABSTRACT

Background: The ability of nanomaterials to induce osteogenic differentiation is limited, which seriously imped the repair of craniomaxillofacial bone defect. Magnetic graphene oxide (MGO) nanocomposites with the excellent physicochemical properties have great potential in bone tissue engineering. In this study, we aim to explore the craniomaxillofacial bone defect repairment effect of MGO nanocomposites and its underlying mechanism. Methods: The biocompatibility of MGO nanocomposites was verified by CCK8, live/dead staining and cytoskeleton staining. The function of MGO nanocomposites induced osteogenic differentiation of BMSCs was investigated by ALP activity detection, mineralized nodules staining, detection of osteogenic genes and proteins, and immune-histochemical staining. BMSCs with or without MGO osteogenic differentiation induction were collected and subjected to high-throughput circular ribonucleic acids (circRNAs) sequencing, and then crucial circRNA circAars was screened and identified. Bioinformatics analysis, Dual-luciferase reporter assay, RNA binding protein immunoprecipitation (RIP), fluorescence in situ hybridization (FISH) and osteogenic-related examinations were used to further explore the ability of circAars to participate in MGO nanocomposites regulation of osteogenic differentiation of BMSCs and its potential mechanism. Furthermore, critical-sized calvarial defects were constructed and were performed to verify the osteogenic differentiation induction effects and its potential mechanism induced by MGO nanocomposites. Results: We verify the good biocompatibility and osteogenic differentiation improvement effects of BMSCs mediated by MGO nanocomposites. Furthermore, a new circRNA-circAars, we find and identify, is obviously upregulated in BMSCs mediated by MGO nanocomposites. Silencing circAars could significantly decrease the osteogenic ability of MGO nanocomposites. The underlying mechanism involved circAars sponging miR-128-3p to regulate the expression of SMAD5, which played an important role in the repair craniomaxillofacial bone defects mediated by MGO nanocomposites. Conclusion: We found that MGO nanocomposites regulated osteogenic differentiation of BMSCs via the circAars/miR-128-3p/SMAD5 pathway, which provided a feasible and effective strategy for the treatment of craniomaxillofacial bone defects.


Subject(s)
Graphite , MicroRNAs , Nanocomposites , MicroRNAs/genetics , Osteogenesis/genetics , RNA, Circular , In Situ Hybridization, Fluorescence , Magnesium Oxide , Cells, Cultured , Bone Regeneration , Magnetic Phenomena , Cell Differentiation
5.
Transl Vis Sci Technol ; 13(4): 12, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38587436

ABSTRACT

Purpose: Circular RNAs (circRNAs) have been verified to participate in multiple biological processes and disease progression. Yet, the role of circRNAs in the pathogenesis of diabetic retinopathy (DR) is still poorly understood and deserves further study. This study aimed to investigate the role of circRNAs in the regulation of high glucose (HG)-induced apoptosis of retinal microvascular endothelial cells (RMECs). Methods: Epiretinal membranes from patients with DR and nondiabetic patients with idiopathic macular epiretinal membrane were collected for this study. The circRNA microarrays were performed using high-throughput sequencing. Hierarchical clustering, functional enrichment, and network regulation analyses were used to analyze the data generated by high-throughput sequencing. Next, RMECs were subjected to HG (25 mM) conditions to induce RMECs apoptosis in vitro. A series of experiments, such as Transwell, the Scratch wound, and tube formation, were conducted to explore the regulatory effect of circRNA on RMECs. Fluorescence in situ hybridization (FISH), immunofluorescence staining, and Western blot were used to study the mechanism underlying circRNA-mediated regulation. Results: A total of 53 differentially expressed circRNAs were found in patients with DR. Among these, hsa_circ_0000880 was significantly upregulated in both the diabetic epiretinal membranes and in an in vitro DR model of HG-treated RMECs. Hsa_circ_0000880 knockout facilitated RMECs vitality and decreased the paracellular permeability of RMECs under hyperglycemia. More importantly, silencing of hsa_circ_0000880 significantly inhibited HG-induced ROS production and RMECs apoptosis. Hsa_circ_0000880 acted as an endogenous sponge for eukaryotic initiation factor 4A-III (EIF4A3). Knockout of hsa_circ_0000880 reversed HG-induced decrease in EIF4A3 protein level. Conclusions: Our findings suggest that hsa_circ_0000880 is a novel circRNA can induce RMECs apoptosis in response to HG conditions by sponging EIF4A3, offering an innovative treatment approach against DR. Translational Relevance: The circRNAs participate in the dysregulation of microvascular endothelial function induced by HG conditions, indicating a promising therapeutic target for DR.


Subject(s)
Diabetic Retinopathy , Epiretinal Membrane , Humans , Endothelial Cells , RNA, Circular/genetics , In Situ Hybridization, Fluorescence , Diabetic Retinopathy/genetics , Apoptosis/genetics , Glucose/toxicity , Eukaryotic Initiation Factor-4A , DEAD-box RNA Helicases
6.
Sci Rep ; 14(1): 8348, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38594373

ABSTRACT

Single molecule fluorescence in situ hybridisation (smFISH) has become a valuable tool to investigate the mRNA expression of single cells. However, it requires a considerable amount of programming expertise to use currently available open-source analytical software packages to extract and analyse quantitative data about transcript expression. Here, we present FISHtoFigure, a new software tool developed specifically for the analysis of mRNA abundance and co-expression in QuPath-quantified, multi-labelled smFISH data. FISHtoFigure facilitates the automated spatial analysis of transcripts of interest, allowing users to analyse populations of cells positive for specific combinations of mRNA targets without the need for computational image analysis expertise. As a proof of concept and to demonstrate the capabilities of this new research tool, we have validated FISHtoFigure in multiple biological systems. We used FISHtoFigure to identify an upregulation in the expression of Cd4 by T-cells in the spleens of mice infected with influenza A virus, before analysing more complex data showing crosstalk between microglia and regulatory B-cells in the brains of mice infected with Trypanosoma brucei brucei. These analyses demonstrate the ease of analysing cell expression profiles using FISHtoFigure and the value of this new tool in the field of smFISH data analysis.


Subject(s)
Image Processing, Computer-Assisted , Software , Animals , Mice , RNA, Messenger/metabolism , In Situ Hybridization, Fluorescence/methods , Up-Regulation
7.
Neuromolecular Med ; 26(1): 12, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600344

ABSTRACT

The role of circular RNAs (circRNAs) in neuropathic pain is linked to the fundamental physiological mechanisms involved. However, the exact function of circRNAs in the context of neuropathic pain is still not fully understood. The functional impact of circGRIN2B on the excitability of dorsal root ganglion (DRG) neurons was investigated using siRNA or overexpression technology in conjunction with fluorescence in situ hybridization and whole-cell patch-clamp technology. The therapeutic efficacy of circGRIN2B in treating neuropathic pain was confirmed by assessing the pain threshold in a chronic constrictive injury (CCI) model. The interaction between circGRIN2B and NF-κB was examined through RNA pulldown, RIP, and mass spectrometry assays. CircGRIN2B knockdown significantly affected the action potential discharge frequency and the sodium-dependent potassium current flux (SLICK) in DRG neurons. Furthermore, knockdown of circGRIN2B dramatically reduced the SLICK channel protein and mRNA expression in vivo and in vitro. Our research confirmed the interaction between circGRIN2B and NF-κB. These findings demonstrated that circGRIN2B promotes the transcription of the SLICK gene by binding to NF-κB. In CCI rat models, the overexpression of circGRIN2B has been shown to hinder the progression of neuropathic pain, particularly by reducing mechanical and thermal hyperalgesia. Additionally, this upregulation significantly diminished the levels of the inflammatory cytokines IL-1ß, IL-6, and TNF-α in the DRG. Upon reviewing these findings, it was determined that circGRIN2B may mitigate the onset of neuropathic pain by modulating the NF-κB/SLICK pathway.


Subject(s)
NF-kappa B , Neuralgia , Rats , Animals , NF-kappa B/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Circular/therapeutic use , Rats, Sprague-Dawley , In Situ Hybridization, Fluorescence , Neuralgia/therapy , Neuralgia/drug therapy , Hyperalgesia/drug therapy , Ganglia, Spinal/metabolism
8.
Acta Neuropathol Commun ; 12(1): 55, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581034

ABSTRACT

A novel methylation class, "neuroepithelial tumor, with PLAGL1 fusion" (NET-PLAGL1), has recently been described, based on epigenetic features, as a supratentorial pediatric brain tumor with recurrent histopathological features suggesting an ependymal differentiation. Because of the recent identification of this neoplastic entity, few histopathological, radiological and clinical data are available. Herein, we present a detailed series of nine cases of PLAGL1-fused supratentorial tumors, reclassified from a series of supratentorial ependymomas, non-ZFTA/non-YAP1 fusion-positive and subependymomas of the young. This study included extensive clinical, radiological, histopathological, ultrastructural, immunohistochemical, genetic and epigenetic (DNA methylation profiling) data for characterization. An important aim of this work was to evaluate the sensitivity and specificity of a novel fluorescent in situ hybridization (FISH) targeting the PLAGL1 gene. Using histopathology, immunohistochemistry and electron microscopy, we confirmed the ependymal differentiation of this new neoplastic entity. Indeed, the cases histopathologically presented as "mixed subependymomas-ependymomas" with well-circumscribed tumors exhibiting a diffuse immunoreactivity for GFAP, without expression of Olig2 or SOX10. Ultrastructurally, they also harbored features reminiscent of ependymal differentiation, such as cilia. Different gene partners were fused with PLAGL1: FOXO1, EWSR1 and for the first time MAML2. The PLAGL1 FISH presented a 100% sensitivity and specificity according to RNA sequencing and DNA methylation profiling results. This cohort of supratentorial PLAGL1-fused tumors highlights: 1/ the ependymal cell origin of this new neoplastic entity; 2/ benefit of looking for a PLAGL1 fusion in supratentorial cases of non-ZFTA/non-YAP1 ependymomas; and 3/ the usefulness of PLAGL1 FISH.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Ependymoma , Glioma, Subependymal , Supratentorial Neoplasms , Child , Humans , Brain Neoplasms/genetics , Cell Cycle Proteins , Central Nervous System Neoplasms/genetics , Ependymoma/pathology , In Situ Hybridization, Fluorescence , Supratentorial Neoplasms/pathology , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics
9.
Theor Appl Genet ; 137(4): 92, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568320

ABSTRACT

KEY MESSAGE: A chromosome fragment influencing wheat heading and grain size was identified using mapping of m406 mutant. The study of TaFPF1 in this fragment provides more insights into wheat yield improvement. In recent years, wheat production has faced formidable challenges driven by rapid population growth and climate change, emphasizing the importance of improving specific agronomic traits such as heading date, spike length, and grain size. To identify potential genes for improving these traits, we screened a wheat EMS mutant library and identified a mutant, designated m406, which exhibited a significantly delayed heading date compared to the wild-type. Intriguingly, the mutant also displayed significantly longer spike and larger grain size. Genetic analysis revealed that a single recessive gene was responsible for the delayed heading. Surprisingly, a large 46.58 Mb deletion at the terminal region of chromosome arm 2DS in the mutant was identified through fine mapping and fluorescence in situ hybridization. Thus, the phenotypes of the mutant m406 are controlled by a group of linked genes. This deletion encompassed 917 annotated high-confidence genes, including the previously studied wheat genes Ppd1 and TaDA1, which could affect heading date and grain size. Multiple genes in this region probably contribute to the phenotypes of m406. We further investigated the function of TaFPF1 using gene editing. TaFPF1 knockout mutants showed delayed heading and increased grain size. Moreover, we identified the direct upstream gene of TaFPF1 and investigated its relationship with other important flowering genes. Our study not only identified more genes affecting heading and grain development within this deleted region but also highlighted the potential of combining these genes for improvement of wheat traits.


Subject(s)
Agriculture , Triticum , Triticum/genetics , In Situ Hybridization, Fluorescence , Genes, Recessive , Edible Grain , Chromosomes
10.
J Neuropathol Exp Neurol ; 83(5): 338-344, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38605523

ABSTRACT

EGFR amplification in gliomas is commonly defined by an EGFR/CEP7 ratio of ≥2. In testing performed at a major reference laboratory, a small subset of patients had ≥5 copies of both EGFR and CEP7 yet were not amplified by the EGFR/CEP7 ratio and were designated high polysomy cases. To determine whether these tumors are more closely related to traditionally defined EGFR-amplified or nonamplified gliomas, a retrospective search identified 22 out of 1143 (1.9%) gliomas with an average of ≥5 copies/cell of EGFR and CEP7 with an EGFR/CEP7 ratio of <2 displaying high polysomy. Of these cases, 4 had insufficient clinicopathologic data to include in additional analysis, 15 were glioblastomas, 2 were IDH-mutant astrocytomas, and 1 was a high-grade glial neoplasm, NOS. Next-generation sequencing available on 3 cases demonstrated one with a TERT promoter mutation, TP53 mutations in all cases, and no EGFR mutations or amplifications, which most closely matched the nonamplified cases. The median overall survival times were 42.86, 66.07, and 41.14 weeks for amplified, highly polysomic, and nonamplified, respectively, and were not significantly different (p = 0.3410). High chromosome 7 polysomic gliomas are rare but our data suggest that they may be biologically similar to nonamplified gliomas.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Retrospective Studies , Brain Neoplasms/pathology , In Situ Hybridization, Fluorescence , ErbB Receptors/genetics , Glioma/genetics , Mutation/genetics , Chromosome Aberrations , Isocitrate Dehydrogenase/genetics
11.
Clin Nucl Med ; 49(5): 434-437, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38557577

ABSTRACT

ABSTRACT: We present a new, extremely rare nonmyxoid cellular variant of extraskeletal myxoid chondrosarcoma. Although diagnosis is radiologically and pathologically challenging, FDG PET/CT and MRI accurately showed the malignancy and high tumor density. A 52-year-old woman complained of a left dorsal mass, which presented inhomogeneous intermediate signals on T2-weighted images, with diffusion restriction, strong enhancement, and increased accumulation of FDG (SUV max , 5.2). Although biopsy was inconclusive, a highly malignant tumor was suspected radiologically. The resected specimen was histologically diagnosed as extraskeletal myxoid chondrosarcoma by detection of EWSR1::NR4A3 fusion using fluorescence in situ hybridization.


Subject(s)
Chondrosarcoma , Fluorodeoxyglucose F18 , Neoplasms, Connective and Soft Tissue , Female , Humans , Middle Aged , Positron Emission Tomography Computed Tomography , In Situ Hybridization, Fluorescence , Chondrosarcoma/diagnostic imaging , Magnetic Resonance Imaging
12.
Medicine (Baltimore) ; 103(14): e37624, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579060

ABSTRACT

INTRODUCTION: Megalosplenia in newly diagnosed multiple myeloma (MM) is extremely rare, posing diagnostic and therapeutic challenges due to its unusual location and clinical manifestations and lack of optimal therapeutic strategies. CASE PRESENTATION: A 65-year-old female who was previously healthy presented with a history of ecchymosis on her right leg accompanied by progressive fatigue for 2 weeks. She was admitted to our center in July 2019 due to thrombocytopenia. The patient presented with megalosplenia, anemia, monoclonal protein (λ-light chain type) in the serum and urine, and 45.6% malignant plasma cells in the bone marrow. Splenectomy was performed due to persistent splenomegaly after 3 cycles of the bortezomib plus dexamethasone regimen, and immunohistochemistry results indicated λ-plasmacytoma of the spleen. The same cytogenetic and molecular abnormalities, including t(14;16), 14q32 amplification, 16q32 amplification, 20q12 amplification, and a novel CYLD gene mutation, were identified using fluorescence in situ hybridization and next-generation sequencing in both bone marrow and spleen samples. Therefore, a diagnosis of MM (λ-light chain type, DS III, ISS III, R-ISS III, high-risk) with spleen infiltration was proposed. The patient did not achieve remission after induction treatment with bortezomib plus lenalidomide and dexamethasone or salvage therapy with daratumumab plus ixazomib and dexamethasone. However, she ultimately did achieve very good partial remission with a regimen of bendamustine plus lenalidomide and dexamethasone. Unfortunately, she died of pneumonia associated with chemotherapy. CONCLUSION: To our knowledge, only 8 cases of spleen plasmacytoma at MM diagnosis have been described previously. Extramedullary myeloma patients with spleen involvement at diagnosis are younger and that the condition is usually accompanied by splenic rupture with aggressive clinical features and poor prognosis. Further studies are needed to explore pathogenesis and effective therapies to prolong the survival of such patients.


Subject(s)
Multiple Myeloma , Plasmacytoma , Humans , Female , Aged , Multiple Myeloma/complications , Multiple Myeloma/diagnosis , Multiple Myeloma/genetics , Lenalidomide , Bortezomib/therapeutic use , Plasmacytoma/pathology , In Situ Hybridization, Fluorescence , Dexamethasone/therapeutic use , Mutation , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Deubiquitinating Enzyme CYLD
13.
Medicine (Baltimore) ; 103(14): e37664, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579065

ABSTRACT

RATIONALE: Desmoplastic small round cell tumor (DSRCT) is a rare and rapidly metastasizing soft tissue sarcoma, distinguished by its unique cell morphology and pleomorphic differentiation. PATIENT CONCERNS: This report describes the case of an 18-year-old male diagnosed with abdominopelvic DSRCT exhibiting metastases to the peritoneum, liver, pleura, bone, and muscle. The patient primarily presented with symptoms of incomplete intestinal obstruction and an abdominal mass. DIAGNOSES: Colonoscopy revealed lumen stenosis caused by external compression mass. Contrast-enhanced computed tomography and 18F-fluorodeoxyglucose positron emission tomography/computed tomography revealed multiple lesions in the abdominopelvic cavity. A needle biopsy of an abdominal wall lesion established it as a malignant tumor, origin unknown. Immunohistochemical staining post-surgery showed positive results for Cytokeratin (CK), CK7, Desmin, Vimentin, Caudal type homeobox 2 (CDX2), and Ki-67. Fluorescence in situ hybridization analysis revealed an Ewing sarcoma breakpoint region 1/EWS RNA binding protein 1 (EWSR1) rearrangement, and next-generation sequencing identified an EWSR1-Wilms tumor protein 1 (WT1) gene fusion. INTERVENTIONS: The patient underwent laparoscopic exploratory surgery, which encompassed biopsy, ascites drainage, adhesion lysis, reinforcement of weakened sections of the small intestinal walls, and repositioning of twisted intestines. Postoperatively, the treatment protocol included fasting, rehydration, gastrointestinal decompression, and parenteral nutrition. However, the patient did not received chemotherapy. OUTCOMES: The patient declined further treatment and deceased in early November. LESSONS: This case highlights the nonspecific nature of DSRCT symptoms. In clinical practice, it is crucial to meticulously evaluate unexplained intestinal obstruction in young patients, considering DSRCT as a differential diagnosis to avoid delays in diagnosis.


Subject(s)
Desmoplastic Small Round Cell Tumor , Intestinal Obstruction , Soft Tissue Neoplasms , Male , Humans , Adolescent , Desmoplastic Small Round Cell Tumor/diagnosis , Desmoplastic Small Round Cell Tumor/therapy , In Situ Hybridization, Fluorescence , Oncogene Proteins, Fusion/genetics
14.
Pestic Biochem Physiol ; 200: 105816, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582574

ABSTRACT

The melon fly Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae) is an agricultural quarantine pest threatening fruit and vegetable production. Heat shock cognate 70 (Hsc70), which is a homolog of the heat shock protein 70 (Hsp70), was first discovered in mice testes and plays an important role in spermatogenesis. In this study, we identified and cloned five Hsc70 genes from melon fly, namely ZcHsc70_1/2/3/4/5. Phylogenetic analysis showed that these proteins are closely related to Hsc70s from other Diptera insects. Spatiotemporal expression analysis showed that ZcHsc70_1 and ZcHsc70_2 are highly expressed in Z. cucurbitae testes. Fluorescence in situ hybridization further demonstrated that ZcHsc70_1 and ZcHsc70_2 are expressed in the transformation and maturation regions of testes, respectively. Moreover, RNA interference-based suppression of ZcHsc70_1 or ZcHsc70_2 resulted in a significant decrease of 74.61% and 63.28% in egg hatchability, respectively. Suppression of ZcHsc70_1 expression delayed the transformation of sperm cells to mature sperms. Meanwhile, suppression of ZcHsc70_2 expression decreased both sperm cells and mature sperms by inhibiting the meiosis of spermatocytes. Our findings show that ZcHsc70_1/2 regulates spermatogenesis and further affects the male fertility in the melon fly, showing potential as targets for pest control in sterile insect technique by genetic manipulation of males.


Subject(s)
Seeds , Tephritidae , Male , Animals , Mice , Phylogeny , In Situ Hybridization, Fluorescence , Tephritidae/genetics , Insect Control/methods , Spermatogenesis/genetics , Fertility/genetics , Heat-Shock Response
15.
J Transl Med ; 22(1): 347, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605354

ABSTRACT

BACKGROUND: THOC7-AS1 and FSTL1 expression are frequently upregulated in cutaneous squamous cell carcinoma (cSCC). However, their molecular biological mechanisms remain elusive and their potential as therapeutic targets needs urgent exploration. METHODS: Human tissue samples were used to evaluate clinical parameters. In vitro and in vivo experiments assessed biological functions. Quantitative PCR, western blot, immunohistochemistry, immunocytochemistry, immunoprecipitation, RNA fluorescence in situ hybridization, RNA pull-down, RNA immunoprecipitation, silver staining, chromatin immunoprecipitation, dual luciferase reporter assays etc. were utilized to explore the molecular biological mechanisms. RESULTS: We found FSTL1 is an oncogene in cSCC, with high expression in tumor tissues and cells. Its elevated expression closely associates with tumor size and local tissue infiltration. In vitro and in vivo, high FSTL1 expression promotes cSCC proliferation, migration and invasion, facilitating malignant behaviors. Mechanistically, FSTL1 interacts with ZEB1 to promote epithelial-to-mesenchymal transition (EMT) in cSCC cells. Exploring upstream regulation, we found THOC7-AS1 can interact with OCT1, which binds the FSTL1 promoter region and promotes FSTL1 expression, facilitating cSCC progression. Finally, treating tumors with THOC7-AS1 antisense oligonucleotides inhibited cSCC proliferative and migratory abilities, delaying tumor progression. CONCLUSIONS: The THOC7-AS1/OCT1/FSTL1 axis regulates EMT and promotes tumor progression in cSCC. This study provides clues and ideas for cSCC targeted therapy.


Subject(s)
Carcinoma, Squamous Cell , Follistatin-Related Proteins , MicroRNAs , RNA, Long Noncoding , Skin Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Follistatin-Related Proteins/genetics , Follistatin-Related Proteins/metabolism , In Situ Hybridization, Fluorescence , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Cell Proliferation/genetics , RNA , MicroRNAs/genetics , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding/genetics , Cell Movement/genetics
16.
Mol Genet Genomic Med ; 12(4): e2423, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622850

ABSTRACT

BACKGROUND: Inflammatory myofibroblastic tumors (IMTs) are rare mesenchymal soft tissue sarcomas that often present diagnostic challenges due to their wide and varied morphology. A subset of IMTs have fusions involving ALK or ROS1. The role of next-generation sequencing (NGS) for classification of unselected sarcomas remains controversial. METHODS AND RESULTS: We report a case of a metastatic sarcoma in a 34-year-old female originally diagnosed as an unclassified spindle cell sarcoma with myofibroblastic differentiation and later reclassified as IMT after NGS revealed a TFG-ROS1 rearrangement. Histologically, the neoplasm had spindle cell morphology with a lobulated to focally infiltrative growth pattern with scant inflammatory cell infiltrate. Immunohistochemistry demonstrated focal desmin and variable smooth muscle actin staining but was negative for SOX10, S100, and CD34. Fluorescence in situ hybridization was negative for USP6 or ALK gene rearrangements. NGS revealed a TFG-ROS1 rearrangement and the patient was treated with crizotinib with clinical benefit. CONCLUSIONS: We discuss the role of NGS as well as its potential benefit in patients with unresectable, ALK-negative metastatic disease. Considering this case and previous literature, we support the use of NGS for patients requiring systemic treatment.


Subject(s)
Protein-Tyrosine Kinases , Sarcoma , Female , Humans , Adult , Protein-Tyrosine Kinases/genetics , Anaplastic Lymphoma Kinase/genetics , In Situ Hybridization, Fluorescence , Proto-Oncogene Proteins/genetics , Sarcoma/drug therapy , Sarcoma/genetics , Sarcoma/pathology , High-Throughput Nucleotide Sequencing , Ubiquitin Thiolesterase/genetics , Vesicular Transport Proteins/genetics
17.
Mol Med Rep ; 29(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38577930

ABSTRACT

Emerging scientific evidence has suggested that the long non­coding (lnc)RNA differentiation antagonizing non­protein coding RNA (DANCR) serves a significant role in human tumorigenesis and cancer progression; however, the precise mechanism of its function in breast cancer remains to be fully understood. Therefore, the objective of the present study was to manipulate DANCR expression in MCF7 and MDA­MB­231 cells using lentiviral vectors to knock down or overexpress DANCR. This manipulation, alongside the analysis of bioinformatics data, was performed to investigate the potential mechanism underlying the role of DANCR in cancer. The mRNA and/or protein expression levels of DANCR, miR­34c­5p and E2F transcription factor 1 (E2F1) were assessed using reverse transcription­quantitative PCR and western blotting, respectively. The interactions between these molecules were validated using chromatin immunoprecipitation and dual­luciferase reporter assays. Additionally, fluorescence in situ hybridization was used to confirm the subcellular localization of DANCR. Cell proliferation, migration and invasion were determined using 5­ethynyl­2'­deoxyuridine, wound healing and Transwell assays, respectively. The results of the present study demonstrated that DANCR had a regulatory role as a competing endogenous RNA and upregulated the expression of E2F1 by sequestering miR­34c­5p in breast cancer cells. Furthermore, E2F1 promoted DANCR transcription by binding to its promoter in breast cancer cells. Notably, the DANCR/miR­34c­5p/E2F1 feedback loop enhanced cell proliferation, migration and invasion in breast cancer cells. Thus, these findings suggested that targeting DANCR may potentially provide a promising future therapeutic strategy for breast cancer treatment.


Subject(s)
Breast Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Breast Neoplasms/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Feedback , In Situ Hybridization, Fluorescence , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism
18.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612518

ABSTRACT

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract, with proto-oncogene, receptor tyrosine kinase (c-kit), or PDGFRα mutations detected in around 85% of cases. GISTs without c-kit or platelet-derived growth factor receptor alpha (PDGFRα) mutations are considered wild-type (WT), and their diverse molecular alterations and biological behaviors remain uncertain. They are usually not sensitive to tyrosine kinase inhibitors (TKIs). Recently, some molecular alterations, including neurotrophic tyrosine receptor kinase (NTRK) fusions, have been reported in very few cases of WT GISTs. This novel finding opens the window for the use of tropomyosin receptor kinase (TRK) inhibitor therapy in these subtypes of GIST. Herein, we report a new case of NTRK-fused WT high-risk GIST in a female patient with a large pelvic mass (large dimension of 20 cm). The tumor was removed, and the histopathology displayed spindle-predominant morphology with focal epithelioid areas, myxoid stromal tissue, and notable lymphoid infiltration with tertiary lymphoid structures. Ten mitoses were quantified in 50 high-power fields without nuclear pleomorphism. DOG1 showed strong and diffuse positivity, and CD117 showed moderate positivity. Succinate dehydrogenase subunit B (SDHB) was retained, Pan-TRK was focal positive (nuclear pattern), and the proliferation index Ki-67 was 7%. Next-generation sequencing (NGS) detected an ETV6::NTRK3 fusion, and this finding was confirmed by fluorescence in situ hybridization (FISH), which showed NTRK3 rearrangement. In addition, an RB1 mutation was found by NGS. The follow-up CT scan revealed peritoneal nodules suggestive of peritoneal dissemination, and Entrectinib (a TRK inhibitor) was administered. After 3 months of follow-up, a new CT scan showed a complete response. Based on our results and the cases from the literature, GISTs with NTRK fusions are very uncommon so far; hence, further screening studies, including more WT GIST cases, may increase the possibility of finding additional cases. The present case may offer new insights into the potential introduction of TRK inhibitors as treatments for GISTs with NTRK fusions. Additionally, the presence of abundant lymphoid infiltration in the present case may prompt further research into immunotherapy as a possible additional therapeutic option.


Subject(s)
Gastrointestinal Stromal Tumors , Tertiary Lymphoid Structures , Female , Humans , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/genetics , In Situ Hybridization, Fluorescence , Receptor, Platelet-Derived Growth Factor alpha/genetics , Immunotherapy , Proto-Oncogene Proteins c-kit , Receptor Protein-Tyrosine Kinases
19.
PLoS One ; 19(4): e0300758, 2024.
Article in English | MEDLINE | ID: mdl-38557976

ABSTRACT

Ciliates are unicellular eukaryotes, regularly involved in symbiotic associations. Symbionts may colonize the inside of their cells as well as their surface as ectosymbionts. Here, we report on a new ciliate species, designated as Zoothamnium mariella sp. nov. (Peritrichia, Sessilida), discovered in the northern Adriatic Sea (Mediterranean Sea) in 2021. We found this ciliate species to be monospecifically associated with a new genus of ectosymbiotic bacteria, here proposed as Candidatus Fusimicrobium zoothamnicola gen. nov., sp. nov. To formally describe the new ciliate species, we investigated its morphology and sequenced its 18S rRNA gene. To demonstrate its association with a single species of bacterial ectosymbiont, we performed 16S rRNA gene sequencing, fluorescence in situ hybridization, and scanning electron microscopy. Additionally, we explored the two partners' cultivation requirements and ecology. Z. mariella sp. nov. was characterized by a colony length of up to 1 mm. A consistent number of either seven or eight long branches alternated on the stalk in close distance to each other. The colony developed three different types of zooids: microzooids ("trophic stage"), macrozooids ("telotroch stage"), and terminal zooids ("dividing stage"). Viewed from inside the cell, the microzooids' oral ciliature ran in 1 » turns in a clockwise direction around the peristomial disc before entering the infundibulum, where it performed another ¾ turn. Phylogenetic analyses assigned Z. mariella sp. nov. to clade II of the family Zoothamnidae. The ectosymbiont formed a monophyletic clade within the Gammaproteobacteria along with two other ectosymbionts of peritrichous ciliates and a free-living vent bacterium. It colonized the entire surface of its ciliate host, except for the most basal stalk of large colonies, and exhibited a single, spindle-shaped morphotype. Furthermore, the two partners together appear to be generalists of temperate, oxic, marine shallow-water environments and were collectively cultivable in steady flow-through systems.


Subject(s)
Ciliophora , Gammaproteobacteria , In Situ Hybridization, Fluorescence , Phylogeny , RNA, Ribosomal, 16S/genetics , Ciliophora/genetics , Gammaproteobacteria/genetics , Sequence Analysis, DNA , DNA, Bacterial
20.
J Pathol Clin Res ; 10(2): e356, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38602501

ABSTRACT

Anaplastic thyroid carcinoma (ATC) is the most advanced and aggressive thyroid cancer, and poorly differentiated thyroid carcinoma (PDTC) lacks anaplastic histology but has lost architectural and cytologic differentiation. Only a few studies have focused on the genetic relationship between the two advanced carcinomas and coexisting differentiated thyroid carcinomas (DTCs). In the present study, we investigated clinicopathologic features and genetic profiles in 57 ATC and PDTC samples, among which 33 cases had concomitant DTC components or DTC history. We performed immunohistochemistry for BRAF V600E, p53, and PD-L1 expression, Sanger sequencing for TERT promoter and RAS mutations, and fluorescence in situ hybridization for ALK and RET rearrangements. We found that ATCs and PDTCs shared similar gene alterations to their coexisting DTCs, and most DTCs were aggressive subtypes harboring frequent TERT promoter mutations. A significantly higher proportion of ATCs expressed p53 and PD-L1, and a lower proportion expressed PAX-8 and TTF-1, than the coexisting DTCs. Our findings provide more reliable evidence that ATCs and PDTCs are derived from DTCs.


Subject(s)
Adenocarcinoma , Ehlers-Danlos Syndrome , Proline/analogs & derivatives , Thiocarbamates , Thyroid Neoplasms , Humans , B7-H1 Antigen , In Situ Hybridization, Fluorescence , Tumor Suppressor Protein p53/genetics , Thyroid Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...